Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.249
Filtrar
1.
J Med Chem ; 67(5): 4100-4119, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482828

RESUMO

C5a is an anaphylatoxin protein produced by the cleavage of the complement system's component C5 protein. It signals through the G-protein-coupled receptor C5a receptor 1 (C5aR1) to induce the chemotaxis of primarily neutrophils and monocytes and the release of inflammatory molecules. A large body of evidence linking C5aR1 signaling to acute and chronic inflammatory disorders has triggered interest in developing potent C5aR antagonists. Herein we report the discovery of new C5aR1 antagonistic chemical classes. Many representatives showed low nanomolar IC50 values in a C5aR1 ß-arrestin-2 recruitment assay, inhibiting the migration of human neutrophils toward C5a and the internalization of the receptor in human whole blood. Two leading compounds were characterized further in vivo. Target engagement of the receptor by these two C5aR1 antagonists was demonstrated in vivo. In particular, the inhibition of migration in vitro with the two compounds further translated in a dose-dependent efficacy in a rat model of C5a-induced neutrophilia.


Assuntos
Complemento C5a , Receptor da Anafilatoxina C5a , Humanos , Ratos , Animais , Complemento C5a/metabolismo , Quimiotaxia , Monócitos/metabolismo , Neutrófilos/metabolismo
2.
Sci Rep ; 14(1): 3105, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326494

RESUMO

Recent studies have indicated the involvement of neutrophil-mediated inflammatory responses in the process leading to intracranial aneurysm (IA) rupture. Receptors mediating neutrophil recruitment could thus be therapeutic targets of unruptured IAs. In this study, complement C5a receptor 1 (C5AR1) was picked up as a candidate that may cause neutrophil-dependent inflammation in IA lesions from comprehensive gene expression profile data acquired from rat and human samples. The induction of C5AR1 in IA lesions was confirmed by immunohistochemistry; the up-regulations of C5AR1/C5ar1 stemmed from infiltrated neutrophils, which physiologically express C5AR1/C5ar1, and adventitial fibroblasts that induce C5AR1/C5ar1 in human/rat IA lesions. In in vitro experiments using NIH/3T3, a mouse fibroblast-like cell line, induction of C5ar1 was demonstrated by starvation or pharmacological inhibition of mTOR signaling by Torin1. Immunohistochemistry and an experiment in a cell-free system using recombinant C5 protein and recombinant Plasmin indicated that the ligand of C5AR1, C5a, could be produced through the enzymatic digestion by Plasmin in IA lesions. In conclusion, we have identified a potential contribution of the C5a-C5AR1 axis to neutrophil infiltration as well as inflammatory responses in inflammatory cells and fibroblasts of IA lesions. This cascade may become a therapeutic target to prevent the rupture of IAs.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Animais , Humanos , Camundongos , Ratos , Complemento C5a/metabolismo , Fibrinolisina/metabolismo , Inflamação , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais
3.
Eur J Pharmacol ; 969: 176425, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387717

RESUMO

Acute kidney injury (AKI) is a critical condition often associated with systemic inflammation and dysregulated gut microbiota. This study aimed to investigate the effects of the C5a receptor antagonist W54011 on lipopolysaccharide (LPS)-induced AKI, focusing on the colon's C5a/C5a receptor pathway, intestinal barrier integrity, and gut microbiota. Our findings demonstrate that W54011 effectively ameliorated kidney injury in the LPS-induced AKI model by selectively inhibiting the colon's C5a/C5a receptor signalling pathway. Additionally, C5a receptor blockade resulted in the inhibition of colonic inflammation and the reconstruction of the intestinal mucosal barrier. Furthermore, W54011 administration significantly impacted the composition and stability of the gut microbiota, restoring the abundance of dominant bacteria to levels observed in the normal state of the intestinal flora and reducing the abundance of potentially harmful bacterial groups. In conclusion, W54011 alleviates LPS-induced AKI by modulating the interplay between the colon, gut microbiota, and kidneys. It preserves the integrity of the intestinal barrier and reinstates gut microbiota, thereby mitigating AKI symptoms. These findings suggest that targeting the colon and gut microbiota could be a promising therapeutic strategy for AKI treatment.


Assuntos
Injúria Renal Aguda , Compostos de Anilina , Microbioma Gastrointestinal , Tetra-Hidronaftalenos , Humanos , Lipopolissacarídeos , Receptor da Anafilatoxina C5a , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Rim , Inflamação , Colo
4.
Hypertension ; 81(1): 138-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909169

RESUMO

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Assuntos
Complemento C3a , Hipertensão , Animais , Humanos , Camundongos , Anafilatoxinas , Angiotensina II , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Fatores de Transcrição Forkhead , Hipertensão/genética , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
5.
Mol Ther ; 32(2): 469-489, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38098230

RESUMO

Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Quimiocina CXCL9/genética , Imunidade , Neoplasias/patologia , Receptor da Anafilatoxina C5a/genética , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Feminino
6.
Clin Immunol ; 259: 109871, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101498

RESUMO

To clarify the role of the C5a/C5aR (C5a receptor) and C5b-9 pathways in macrovascular thrombosis (MAT) and renal microthrombosis (MIT), 73 renal biopsy-proven complement-mediated thrombotic microangiopathy (C-TMA) patients were enrolled; 9 patients with pure MAT and 13 patients with pure MIT were selected for further study. Twenty-five external C-TMA patients were selected as the validation cohort. Plasma C5a and sC5b-9 (soluble C5b-9) levels were significantly higher in patients with MAT than in those with MIT (P = 0.008, P = 0.041, respectively). The mean optical density of C5aR1 in the kidney was significantly higher in MAT patients than in those with MIT (P < 0.001). Both urinary sC5b-9 levels (MIT: P < 0.001, MAT: P = 0.004) and renal deposition of C5b-9 (MIT: P < 0.001, MAT: P = 0.001) were significantly higher in C-TMA patients compared to normal control, but were similar between MAT and MIT groups. In the correlation analysis within 22C-TMA patients, urinary sC5b-9 levels and renal deposition of C5b-9 were positively correlated to renal MIT formation (P = 0.009 and P = 0.031, respectively). Furthermore, the renal citrullinated histone H3 (CitH3)- and neutrophil elastase (NE)-positive area ratios were both significantly higher in the MAT group than in the MIT group (P = 0.006 and P = 0.020, respectively). Therefore, the local C5b-9 and C5a/C5aR1 pathways might have differential contributions to MIT and MAT formation in the disease.


Assuntos
Trombose , Microangiopatias Trombóticas , Humanos , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento , Receptor da Anafilatoxina C5a , Complemento C5b
7.
Cell Signal ; 113: 110944, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890688

RESUMO

The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.


Assuntos
Fatores Imunológicos , Insulina , Receptor da Anafilatoxina C5a , Humanos , Fatores Imunológicos/metabolismo , Insulina/fisiologia , Músculo Esquelético/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais
8.
Cells ; 12(23)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067135

RESUMO

The complement system mediates diverse regulatory immunological functions. C5aR2, an enigmatic receptor for anaphylatoxin C5a, has been shown to modulate PRR-dependent pro-inflammatory cytokine secretion in human macrophages. However, the specific downstream targets and underlying molecular mechanisms are less clear. In this study, CRISPR-Cas9 was used to generate macrophage models lacking C5aR2, which were used to probe the role of C5aR2 in the context of PRR stimulation. cGAS and STING-induced IFN-ß secretion was significantly increased in C5aR2 KO THP-1 cells and C5aR2-edited primary human monocyte-derived macrophages, and STING and IRF3 expression were increased, albeit not significantly, in C5aR2 KO cell lines implicating C5aR2 as a regulator of the IFN-ß response to cGAS-STING pathway activation. Transcriptomic analysis by RNAseq revealed that nucleic acid sensing and antiviral signalling pathways were significantly up-regulated in C5aR2 KO THP-1 cells. Altogether, these data suggest a link between C5aR2 and nucleic acid sensing in human macrophages. With further characterisation, this relationship may yield therapeutic options in interferon-related pathologies.


Assuntos
Interferon beta , Macrófagos , Proteínas de Membrana , Ácidos Nucleicos , Receptor da Anafilatoxina C5a , Humanos , Interferon beta/metabolismo , Macrófagos/metabolismo , Ácidos Nucleicos/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Receptor da Anafilatoxina C5a/metabolismo , Proteínas de Membrana/metabolismo
9.
Int Immunopharmacol ; 125(Pt B): 111112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948857

RESUMO

Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.


Assuntos
Proteína HMGB1 , Nanopartículas , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Proteína HMGB1/metabolismo , Dióxido de Silício/toxicidade , Células Epiteliais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Complemento C5a/metabolismo
10.
J Innate Immun ; 15(1): 836-849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37952515

RESUMO

INTRODUCTION: The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS: Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS: The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION: Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.


Assuntos
Anticorpos Monoclonais , Cálcio , Cricetinae , Animais , Camundongos , Humanos , Cricetulus , Complemento C5a/metabolismo , Transdução de Sinais , Receptor da Anafilatoxina C5a
11.
J Immunol ; 211(9): 1359-1366, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756526

RESUMO

Demethylation of the T regulatory cell (Treg)-specific demethylation region (TSDR) of the Foxp3 gene is the hallmark of Foxp3+ Treg stability, but the cellular signaling that programs this epigenetic state remains undefined. In this article, we show that suppressed C3a and C5a receptor (C3ar1/C5ar1) signaling in murine Tregs plays an obligate role. Murine C3ar1-/-C5ar1-/- Foxp3+ cells showed increased suppressor of cytokine signaling 1/2/3 expression, vitamin C stabilization, and ten-eleven translocation (TET) 1, TET2, and TET3 expression, all of which are linked to Treg stability. C3ar1-/-C5ar1-/- Foxp3+ cells additionally were devoid of BRD4 signaling that primes Th17 cell lineage commitment. Orally induced OVA-specific C3ar1-/-C5ar1-/- Foxp3+ OT-II Tregs transferred to OVA-immunized wild-type recipients remained >90% Foxp3+ out to 4 mo, whereas identically generated CD55-/- (DAF-/-) Foxp3+ OT-II Tregs (in which C3ar1/C5ar1 signaling is potentiated) lost >75% of Foxp3 expression by 14 d. After 4 mo in vivo, the C3ar1-/-C5ar1-/- Foxp3+ OT-II Tregs fully retained Foxp3 expression even with OVA challenge and produced copious TGF-ß and IL-10. Their TSDR was demethylated comparably with that of thymic Tregs. They exhibited nuclear translocation of NFAT and NF-κB reported to stabilize thymic Tregs by inducing hairpin looping of the TSDR to the Foxp3 promoter. Thus, disabled CD4+ cell C3ar1/C5ar1 signaling triggers the sequential cellular events that lead to demethylation of the Foxp3 TSDR.


Assuntos
Metilação de DNA , Linfócitos T Reguladores , Camundongos , Animais , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Receptor da Anafilatoxina C5a/metabolismo , Proteínas Nucleares/genética , Desmetilação , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
12.
Immunobiology ; 228(5): 152413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37598588

RESUMO

The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Autoimunidade , Receptor da Anafilatoxina C5a , Inflamação
13.
Clin Drug Investig ; 43(8): 595-603, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37596445

RESUMO

Avacopan is a relatively novel drug with complement antagonizing properties, and it has demonstrated promising outcomes in treating antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis. This review article seeks to investigate the current standard of care for ANCA vasculitis with the combination of avacopan. The current standard therapy involves the usage of daily corticosteroids in addition to either cyclophosphamide or rituximab; however, prolonged use of corticosteroids is known to be associated with various adverse effects. Avacopan was introduced as a possible substitution to alleviate high-corticosteroid dosages. It functions through competitive inhibition of the C5a receptor in the complement system and results in the reduction of neutrophil activation and migration to sites of inflammation. Clinical trials have observed the efficacy of avacopan both in conjunction with standard therapy with corticosteroids and without corticosteroids. The use of avacopan was able to achieve disease remission and improve renal function in patients with ANCA-associated vasculitis. Additionally, the novel treatment did not increase the risk of adverse events during treatment, while also lowering the toxic effects associated with corticosteroid usage. In summary, current evidence supports the success and safety of administering avacopan to treat patients with ANCA-associated vasculitis. Additional clinical trials are warranted to identify optimal dosage and method in using avacopan in the clinical setting.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Receptor da Anafilatoxina C5a , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Inflamação
14.
Biochem Biophys Res Commun ; 675: 78-84, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454400

RESUMO

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder characterized by amyloid plaques, neurofibrillary tangles, and cerebral amyloid angiopathy (CAA). CAA is a condition manifesting as amyloid deposits in the cerebral vasculature, eventually leading to microhemorrhage. Here, we have treated the CRND8 mouse model with the C5a agonist (EP67) in order to observe the effects on cerebral amyloidosis, CAA, and hyperphosphorylated tau. EP67 attaches to the C5a receptor on phagocytes and stimulates the engulfment and digestion of fibrillar and prefibrillar amyloid while exhibiting minimal inflammation. Older CRND8 mice and their respective controls were treated with EP67 for a prolonged period of time. Following treatment, the CRND8 mice displayed improved spatial memory, while both amyloid deposition and tau hyperphosphorylation were found to be diminished.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Camundongos , Animais , Receptor da Anafilatoxina C5a , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/tratamento farmacológico , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico , Cognição , Placa Amiloide , Amiloide/metabolismo , Fosfopiruvato Hidratase
15.
Nihon Yakurigaku Zasshi ; 158(5): 399-407, 2023 Sep 05.
Artigo em Japonês | MEDLINE | ID: mdl-37460300

RESUMO

Avacopan (TAVNEOS® capsules) is an orally available selective C5a receptor (C5aR) antagonist. It has been approved in Japan since 2021 for the treatment of microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA), the two major subtypes of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The current standard therapy combining glucocorticoids (GC) and immunosuppressants has greatly improved the prognosis of AAV, however, issues such as side effects associated with GC use remain to be resolved. Avacopan suppresses priming of neutrophils induced by the complement component C5a, a process deeply involved in the pathogenesis of AAV. In pre-clinical studies, avacopan inhibited chemotaxis and priming of neutrophils induced by C5a-C5aR signaling. It also significantly suppressed nephritis and renal damage in an ANCA-induced glomerulonephritis mouse model. In the global phase 3 study "ADVOCATE", avacopan achieved both primary endpoints being 1) non-inferior to prednisone in inducing remission at week 26 and 2) superior in sustained remission at week 52 for MPA and GPA patients. Additionally, with avacopan, GC toxicity score was significantly lower and fewer adverse events possibly related to GC were observed. Furthermore, avacopan increased estimated glomerular filtration rate (eGFR) more than prednisone indicating improved renal function. Thus, the novel mechanism of avacopan targeting the complement system is a promising new therapeutic option for AAV with fewer GC-related side effects and better improvement of renal function.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Poliangiite Microscópica , Animais , Camundongos , Prednisona/uso terapêutico , Receptor da Anafilatoxina C5a , Anticorpos Anticitoplasma de Neutrófilos/uso terapêutico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Poliangiite Microscópica/tratamento farmacológico , Poliangiite Microscópica/patologia , Glucocorticoides/efeitos adversos
16.
Front Immunol ; 14: 1197709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275893

RESUMO

Introduction: The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods: LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results: We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion: Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.


Assuntos
Doenças Autoimunes , Epidermólise Bolhosa Adquirida , Animais , Camundongos , Complemento C5a/metabolismo , Ativação de Neutrófilo , Neutrófilos , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo
17.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373467

RESUMO

Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.


Assuntos
Neutrófilos , Receptor da Anafilatoxina C5a , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Células Matadoras Naturais , Anafilatoxinas
18.
Biochim Biophys Acta Gen Subj ; 1867(8): 130374, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37187450

RESUMO

Mitochondrial dynamics is a morphological balance between fragmented and elongated shapes, reflecting mitochondrial metabolic status, cellular damage, and mitochondrial dysfunction. The anaphylatoxin C5a derived from complement component 5 cleavage, enhances cellular responses involved in pathological stimulation, innate immune responses, and host defense. However, the specific response of C5a and its receptor, C5a receptor (C5aR), in mitochondria is unclear. Here, we tested whether the C5a/C5aR signaling axis affects mitochondrial morphology in human-derived retinal pigment epithelial cell monolayers (ARPE-19). C5aR activation with the C5a polypeptide induced mitochondrial elongation. In contrast, oxidatively stressed cells (H2O2) responded to C5a with an enhancement of mitochondrial fragmentation and an increase in the number of pyknotic nuclei. C5a/C5aR signaling increased the expression of mitochondrial fusion-related protein, mitofusin-1 (MFN1) and - 2 (MFN2), as well as enhanced optic atrophy-1 (Opa1) cleavage, which are required for mitochondrial fusion events, whereas the mitochondrial fission protein, dynamin-related protein-1 (Drp1), and mitogen-activated protein kinase (MAPK)-dependent extracellular signal-regulated protein kinase (Erk1/2) phosphorylation were not affected. Moreover, C5aR activation increased the frequency of endoplasmic reticulum (ER)-mitochondria contacts. Finally, oxidative stress induced in a single cell within an RPE monolayer (488 nm blue laser spot stimulation) induced a bystander effect of mitochondrial fragmentation in adjacent surrounding cells only in C5a-treated monolayers. These results suggest that C5a/C5aR signaling produced an intermediate state, characterized by increased mitochondrial fusion and ER-mitochondrial contacts, that sensitizes cells to oxidative stress, leading to mitochondrial fragmentation and cell death.


Assuntos
Dinâmica Mitocondrial , Receptor da Anafilatoxina C5a , Humanos , Células Epiteliais , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Pigmentos da Retina/farmacologia
19.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227781

RESUMO

Therapeutic strategies targeting complement have revolutionized the treatment of myasthenia gravis (MG). However, a deeper understanding of complement modulation in the human system is required to improve treatment responses and identify off-target effects shaping long-term outcomes. For this reason, we studied a cohort of patients with MG treated with either eculizumab or azathioprine as well as treatment-naive patients using a combined proteomics and metabolomics approach. This strategy validated known effects of eculizumab on the terminal complement cascade. Beyond that, eculizumab modulated the serum proteometabolome as distinct pathways were altered in eculizumab-treated patients, including the oxidative stress response, mitogen-activated protein kinase signaling, and lipid metabolism with particular emphasis on arachidonic acid signaling. We detected reduced levels of arachidonate 5-lipoxygenase (ALOX5) and leukotriene A4 in eculizumab-treated patients. Mechanistically, ligation of the C5a receptor (C5aR) is needed for ALOX5 metabolism and generation of downstream leukotrienes. As eculizumab prevents cleavage of C5 into C5a, decreased engagement of C5aR may inhibit ALOX5-mediated synthesis of pro-inflammatory leukotrienes. These findings indicate distinct off-target effects induced by eculizumab, illuminating potential mechanisms of action that may be harnessed to improve treatment outcomes.


Assuntos
Complemento C5 , Miastenia Gravis , Humanos , Proteínas do Sistema Complemento , Ativação do Complemento , Miastenia Gravis/tratamento farmacológico , Receptor da Anafilatoxina C5a , Leucotrienos
20.
Blood Adv ; 7(21): 6411-6427, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37257194

RESUMO

In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.


Assuntos
Anafilatoxinas , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Camundongos , Animais , Isquemia/etiologia , Receptor da Anafilatoxina C5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...